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Radiation from Flux Flow in Josephson Junction Structures

L. N. Bulaevskii1 and A. E. Koshelev2

We derive the radiation power from a single Josephson junction (JJ) and from layered
superconductors in the flux-flow regime. For JJ case, we formulate the boundary condi-
tions for the electric and magnetic fields at the edges of the superconducting leads using
the Maxwell equations in the dielectric media and find dynamic boundary conditions for the
phase difference in JJ which account for the radiation. We derive the fraction of the power fed
into JJ transformed into the radiation. In a finite-length JJ this fraction is determined by the
dissipation inside JJ and it tends to unity as dissipation vanishes independently of mismatch of
the junction and dielectric media impedances. We formulate also the dynamic boundary con-
ditions for the phase difference in intrinsic JJs in highly anisotropic layered superconductors
of the Bi2Sr2CaCu2O8 type at the boundary with free space. Using these boundary conditions,
we solve equations for the phase difference in the linear regime of Josephson oscillations for
rectangular and triangular lattices of Josephson vortices. In the case of rectangular lattice
for crystals with the thickness along the c-axis much larger than the radiation wavelength,
we estimate the radiation power per unit length in the direction of magnetic field at the fre-
quency 1 THz as ∼N µW/cm for Tl2Ba2CaCu2O8 and ∼0.04 N µW/cm for Bi2Sr2CaCu2O8.
For crystals with thickness smaller than the radiation wavelength, we found that the radiation
power in the resonance is independent on number of layers and can be estimated at 1 THz
as 0.5 W/cm (Tl2Ba2CaCu2O8) and 24 mW/cm (Bi2Sr2CaCu2O8). For rectangular lattice, due
to superradiation regime, up to half of power fed into the crystal may be converted into the
radiation. In the case of triangular or random lattice in the direction perpendicular to the
layers, the fraction of power converted into the radiation depends on the dissipation rate and
is much lower than for rectangular lattice in the case of high-temperature superconductors
with nodes in the gap.

1. INTRODUCTION

In 1962, Josephson [1] predicted electromag-
netic radiation from superconducting tunneling junc-
tion arguing that in the presence of voltage V across
the junction the phase difference ϕ changes with time
as ∂ϕ/∂t = 2eV/h, while the tunneling current density
J changes as J = Jc sin(2eVt/h). Here Jc is the crit-
ical superconducting current via the junction. Thus,
the photons with the Josephson frequency ω = 2eV/h
may be emitted from Josephson junction (JJ). Such a
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radiation from JJ into the waveguide with the power
Prad ∼ 10−12 W has been detected by Dmitrenko
et al. [2] and Langenberg et al. [3] soon after the
Josephson prediction. The junction in both experi-
ments was subject to bias current and dc magnetic
field applied parallel to the junction. The dc mag-
netic field induces Josephson vortices, and they move
to the JJ edge in the presence of the transport cur-
rent across the junction, causing oscillations of the
magnetic and electric fields inside JJ and in super-
conducting leads around JJ. More precisely, flux flow
induces electromagnetic (Swihart) waves inside JJ,
and they are partially transmitted outside when hit JJ
edges [4]. From measurements of the current–voltage
(I–V) characteristics, Langenberg et al. [3] found the
power P = IV fed into the junction and the fraction
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converted into radiation, Q = Prad/P ≈ 10−5. The-
oretically, Q was estimated as a ratio of the
impedances of JJ modeled as a strip line and the
waveguide [3,5]:

QZ = 4Z0Zs

(Z0 + Zs)2
∼

(
8λd
εw2

)1/2

, (1)

where Z0 is the waveguide impedance, Zs is the
strip line impedance in the limit kωw � 1 and Zs �
Z0. Here λ is the London penetration length of the
superconducting leads, d is the thickness of the insu-
lating layer, εi is its dielectric constant, kω = ω/c and
w is the junction width. Equation (1) gives ≈10−5 for
the studied junction in agreement with experimen-
tal value. Thus, low radiation power from JJ was at-
tributed to the mismatch between the impedances of
the junction and the waveguide. To the best of our
knowledge, no deeper theoretical treatment of ra-
diation was made after that and the concept of the
impedance mismatch for a single JJ and later for lay-
ered superconductors with intrinsic JJ was accepted
by the community.

As radiation from the vortex flow in a single
junction was found to be quite low, a natural idea was
proposed to use multiple lock-in junctions. Then, in
the super-radiation regime, radiation power may be
enhanced by the factor N2, where N is the number
of synchronized junctions inside the space of the ra-
diation wavelength. Intensive theoretical and exper-
imental study was done in this direction, see, e.g.,
[6–12]. However, an effective way to synchronize
many junctions was not found so far. There are two
problems to overcome for synchronization. The first
one is the technologically inevitable variation of pa-
rameters from junction to junction, mainly Jc param-
eter, which affects operating frequency of the junc-
tion at given current. The second problem is that
the coherent locked-in flow of the Josephson vortices
in different junctions is unstable in a wide range of
parameters.

The discovery of layered high-temperature su-
perconductivity added new breath into this activity.
It was recognized that the Bi- and Tl-based cuprate
superconductors with weakly coupled superconduct-
ing CuO2 layers exhibit the same static and dynami-
cal Josephson properties as artificial tunneling junc-
tions. In another words, the crystals Bi2Sr2CaCu2O8

(BSCCO) and Tl2Ba2CaCu2O8 (TBCCO) represent
a stack of many intrinsic JJs on the atomic scale
[13]. The first indication of the intrinsic Josephson ef-
fect was observation of switching of individual junc-

tions to the resistive state in the I–V characteristics
[14]. After that, many Josephson effects have been
found in these systems including the Fraunhofer pat-
terns in the dependence of the critical current on
the dc magnetic field applied parallel to the layers
[15], Josephson plasma resonance [16] strongly af-
fected by pancake vortices in the presence of the
magnetic field applied perpendicular to the layers
[17,18], Shapiro steps in the I–V characteristics in-
duced by external microwave radiation [19,20], and
Fiske resonances [21–23].

One can anticipate much smaller variations of
intrinsic-junction parameters in comparison with the
artificially-fabricated junction arrays. In addition, the
intrinsic junctions are much closer to each other and
one can anticipate much stronger coupling between
them. What is more, there are many junctions on the
scale of the radiation wavelength, and so they will
super-radiate when synchronized. Due to these ad-
vantages, the moving Josephson vortex lattice in lay-
ered superconductors was proposed as a source of
monochromatic tunable continuous electromagnetic
radiation in the terahertz frequency range [24–27].
Experimentally, radiation from the high-temperature
layered superconductor BSCCO at relatively low fre-
quencies, 7–16 GHz, was detected by Hechtfischer
et al. [28]. Some indirect evidence of radiation at
higher frequencies has been recently reported by
Kadowaki et al. [29] and Batov et al. [30] reported
radiation at the frequency 0.5 THz with power 1 pW
from BSCCO mesa consisting 100 junctions in zero
dc magnetic field.

Therefore, it is interesting to estimate theoret-
ically the possible radiation power generated by a
moving vortex lattice and find optimal conditions
for generation. For that we need to understand the
mechanism of conversion of the electromagnetic field
associated with the flux flow of the Josephson vor-
tices into the electromagnetic waves outside of the
JJ and find limitations imposed by this mechanism in
Josephson structures. A natural first step is to under-
stand at the microscopic level the conversion mech-
anism in a single JJ. Then such an approach may be
extended to layered structures.

In the first part, we consider radiation from a
single JJ. Then, the method to treat radiation is ex-
tended to intrinsic junctions in layered supercon-
ductors. We will show that super-radiation regime
is inherent to moving rectangular vortex lattice
in such crystals. We will discuss the consequences
of this regime for the radiation power and I–V
characteristics.
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1.1. Radiation from a Single Josephson Junction

As we discussed in Section 1, a common way to
evaluate the radiation out of a single JJ is to take
product of the total power supplied to the junction,
P = IV and the impedance mismatch coefficient QZ,
Eq. (1). A weak point of this impedance approach for
real, finite-length JJ is ignoring of multiple reflections
inside the junction, i.e., assumption that the propa-
gating electromagnetic wave has only one attempt to
escape the JJ, decaying before reflected wave reaches
another edge. In fact, at low dissipation rate (low
temperature and low dielectric losses inside the in-
sulating layer) reflections lead to the formation of al-
most standing Swihart waves inside JJ. In this case,
Q strongly depends on the dissipation and approaches
unity as dissipation vanishes. Then the question turns
out to be what are limitations on P and Prad rather
than on Q.

However, the standard analysis of transport
properties of finite-size JJs uses sine-Gordon equa-
tion and zero-derivative boundary conditions for the
oscillating part of the phase at the edges [5,31–33].
At the JJ edges vanishing oscillating magnetic field
B = ∂ϕ/∂x leads to zero Poynting vector. Thus, for
such boundary conditions, the outside radiation is ab-
sent and all supplied power dissipates inside JJ.

In the following, we reconsider this problem, dis-
cuss the power conversion mechanism and derive the
radiation power from a single JJ into free space in
the case when w is much larger than the wavelength
of outcoming electromagnetic wave. This is not real-
istic limit, but it is a simplest one which demonstrates
the method to treat radiation and which may be di-
rectly extended to the case of smaller w. Our rigor-
ous approach is based on solution of the Maxwell
equations inside the superconducting leads and in
outside space, which allowed us to formulate accu-
rate dynamic boundary conditions for the oscillating
phase inside JJ. In the linear regime of Josephson os-
cillations, we obtained analytical results for Prad and
Q using the perturbation theory. In this regime, we
found that Q ∝ QZN , where N is the number of re-
flections before Swihart wave decays inside JJ. At
low temperatures in JJ made out of gapped supercon-
ductors with perfect insulating layer, N may be large
compensating small QZ. Our approach also opens the
way for numerical calculations in general case, when
linear approach is invalid.

The JJs with low level of the dissipation become
available now due to the perspective to use them as
a qubits for quantum computing [34]. The radiation

should be stronger in such junctions in comparison
with previously studied ones. This gives additional
motivation to reconsider the theoretical background
of the radiation from JJ.

To find outside radiation due to the Joseph-
son oscillations, one has to match oscillating fields
inside the junction and in the superconducting leads
with the wave solution outside the junction. Express-
ing the oscillating fields inside the junctions via the
phase difference, we derive dynamic boundary condi-
tions for the phase difference and relate the Poynting
vector of radiation to the phase difference at junction
edge. The final step is the solution of the equations
for the phase difference accounting for the dynamic
boundary conditions and derivation of the Poynting
vector.

1.2. Equation for the Phase Difference

We consider a JJ with the length l � λ located
at −l < x < 0 and bounded by dielectric with dielec-
tric constant εd, see Fig. 1. Strength of the coupling
in the junction is characterized by the Josephson cur-
rent density Jc and related parameters: the Josephson
length, λJ =

√
c�0/(8π2�Jc), and plasma frequency,

ωp =
√

8π2dcJc/(εi�0), where � = 2λ + d. We con-
sider the simplest situation when the JJ width along
z direction, w, is larger than both λJ and wavelength
of outcoming electromagnetic wave. We will consider
straight Josephson vortices along the external mag-
netic field. In this approach the problem becomes
one dimensional for the phase difference and two di-
mensional for the electric and magnetic fields in the
outer space as both of them become z-independent.
We consider junction in resistive state and as-
sume that the junction phase, ϕ, oscillates with the

0 x

x

+

-

Fig. 1. A finite-size JJ opened into free space at both edges. El-
lipses illustrate the moving vortex lattice. Curved lines show the
screening currents inside the superconducting leads, arrows show
radiation from area 2λ around the junction. The applied dc mag-
netic field H0 is along the z-axis.
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Josephson frequency ω generating oscillating electric
(Ex and Ey) and magnetic (Bz) fields inside the junc-
tion and in the superconducting leads. Our task is
to find spatial distribution of these fields and match
them with outside fields to find equation and bound-
ary conditions for ϕ.

We first derive equation for the oscillating mag-
netic field inside the superconducting leads. We use
complex representation for the oscillating fields and
phase, e.g.,

ϕ(x, t) = 〈ϕ(x, t)〉t +
∑

ω

Re[ϕω(x)e−iωt].

Here, 〈· · ·〉t means time average. The phase gradient
is connected by the following relation with the mag-
netic field inside the junction and supercurrents flow-
ing along the junction at the opposite sides

∇xϕ = 8π2λ2

c�0
[Jx+ − Jx−] − 2πd

�0
Bz. (2)

From Maxwell equations, material equation for cur-
rent inside superconductor, J = (c/4πλ2)[(�0/2π)
∇φ − A] + σqE, London relation for the electric
field, E = −(4πλ2iω/c)J, and Eq. (2), we derive the
following equation for the oscillating magnetic field
inside the leads (−� < x < 0) at d � λ

(∇2
x + ∇2

y

)
Bz(ω) − Bz(ω)

λ2
ω

= �0

2πλ2

∂ϕω

∂x
δ(y), (3)

λ−2
ω = λ−2 − εsk2

ω + 4πikωσq/c, kω = ω/c. (4)

We ignore small contribution to the magnetic field
from the dc current flowing via the junction. The
ac electric field inside the superconducting leads is
Ey(ω, x, y) = iλ2

ωkω∇xBz(ω, x, y). To obtain the total
electric field in the junction area, one has to account
also for the field inside the dielectric layer. This gives

Ey(ω, x, y) = − iω�0

2πc
ϕω(x)δ(y) + iλ2

ωkω∇xBz(ω, x, y).

(5)
The boundary condition for ϕω(x) follows from the
boundary condition for the electric field

−iω[εdEx(+0, y) − εEx(−0, y)] = 4πJx(−0, y).

As Ex(−0, y) = −iω (4πλ2/c2) Jx(−0, y),
we obtain

4π
(
1 − εk2

0λ
2)Jx(−0, y) = −iωεdEx(+0, y). (6)

As the electric field Ex(+0, y) is continuous at
y = 0, this means that Jx(0, y) also must be continu-
ous and from Eq. (2) in the limit d � λ we obtain

∇xϕω(0) = ∇xϕω(−l) = 0. (7)

We can represent solution of Eq. (3) near the edge
x = 0 as

Bz(x, y) = Bb(x, y) − �0

(2πλ)2

∫ 0

−∞
∇x′ϕω(x′)dx′

× [K0(c ) − K0(c+)],

c± =
√

(x ± x′)2 + y2/λω, (8)

where K0(z) is the modified Bessel function and
Bb(x, y) is the solution of the homogeneous equation

(∇2
x + ∇2

y

)
Bb − λ−2

ω Bb = 0, (9)

with the boundary condition Bb(−0, y) = Bz(+0, y).
As a function of x, Bb(x, y) decays at distance ∼λ

from the boundary. For its Fourier transform along
the y-direction, we obtain [kx = (λ−2

ω + k2
y )1/2]

Bb(ω, x, y) =
∫

dky

2π
Bz(+0, ky) exp(−κx|x|).

For static case, distribution of the magnetic field near
the edge of JJ has been recently derived by A. Gure-
vich (unpublished).

Using Maxwell equation ∇xB = (iωεi/c)Ey−
(4π/c)Jy, Josephson relation Ey(x, 0) = −iω�0ϕω(x)/
(2πcd), and Eq. (8), we find equation for the oscillat-
ing phase
(

ω2

ω2
p

+ αt
iω
ωp

)
ϕω(x) + λ2

J

πλ

∫ 0

−∞
dx′∇x

[
K0

(
x − x′

λω

)

+ K0

(
x + x′

λω

)]
∇x′ϕω(x′) − c∇xBb(x, 0)

4πJc
= sω(x),

(10)

where sω(x) is the complex amplitude of the
oscillating Josephson current, sin[ϕ(x, t)] = Re[sω(x)
exp (−iωt)], and αt = ωpσt�0/(2πJccd) is damping
due to the tunneling quasiparticle conductivity. In
static case, similar nonlocal equation has been de-
rived by Gurevich [35]. In the case λ � λJ and |x| �
λ, non-locality is not essential, and Eq. (10) can be
reduced to usual local approximate equation
(

ω2

ω2
p

+ αt
iω
ωp

)
ϕω + λ2

J

(
1 − αq

iω
ωp

)
∇2

xϕω = sω(x),

(11)
where αq = 2πλ2ωpσq/c2 is the dissipation due to
quasiparticles inside superconductor and we used ex-
pansion λω/λ ≈ 1 − 2πiλ2kωσq/c neglecting k2

ω term.
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1.3. Boundary Conditions and the Poynting Vector

Near the boundary situation is more compli-
cated because, in addition to smoothly changing part,
the phase has component decaying at distances of or-
der λ from the boundary. This extra phase is smaller
than the smooth phase by the factor ∼λ/λJ but it
has comparable derivative. Our purpose is to de-
rive accurate boundary condition for the smooth
phase, ϕω(x), obeying Eq. (11). For this we inte-
grate Eq. (10) from intermediate distance −xi with
λ � xi � λJ up to the boundary x = 0. Neglecting
small terms proportional to xi and Bb(−xi, 0) [for
Bz(0, y) � �0/(4πλ2)], using local approximation at
x = −xi, we obtain the boundary condition for the
smooth phase in a very simple form

∇xϕω(0) ≈ ∇xϕω(−xi) = − λ

λω

4πλ

�0
Bz(ω, r = 0).

(12)
This equation can be compared with condition

(7) for the total phase. Equation (12) allows us reduce
the problem to solution of local Eq. (11) for smooth
phase with modified boundary conditions and avoid
solving exact integral equation for the total phase,
Eqs. (7) and (10).

For that we need to express Bz(r = 0) via ϕω.

Relation between the electric and magnetic field at
the boundary is determined by properties of outside
media.

1.4. Outside Dielectric Media

We consider first outside dielectric media with
dielectric constant εd. In the situation ωkω � 1, in
the straight-vortices approach, outside fields are z-
independent. In addition, if we assume that the di-
electric media is infinite in y direction and the thick-
ness of the leads is much larger than λ, we can use
Fourier transform in this direction. In this case, the
Fourier components of fields with |ky| <

√
εdkω prop-

agate in the media, while the field components decay
with |ky| >

√
εdkω. In particular, for Ey(ω, x, ky) we

have

Ey(ω, x, ky)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ey(ω, 0, ky) exp[i
√

εdk2
ω − k2

y sign (ω)x],

for |ky| <
√

εdkω,

Ey(ω, 0, ky) exp[−
√

k2
y − εdk2

ωx],

for |ky| >
√

εd|kω|.

(13)

Other field components, Ex and Bz, can be ex-
pressed via Ey(ω, 0, ky). First, Ex(ω, x, ky) can be ob-
tained from Eq. (13) and Maxwell equation ∇E =
0 and then Bz(ω, x, ky) can be obtained using the
Maxwell equation (� × E)z = ikωBz which gives

Bz(ω, x, ky) = εd|kω|√
εdk2

ω − k2
y

Ey(ω, 0, ky)

× exp[i
√

εdk2
ω − k2

y sign(ω)x], for |ky| <
√

εdkω,

Bz(ω, x, ky) = −iεdkω√
k2

y − εdk2
ω

Ey(ω, 0, ky)

× exp
[
−

√
k2

y − εdk2
ωx

]
, for |ky| >

√
εdkω, (14)

In particular, this gives relation between fields
at the boundary, which we will use to formulate the
boundary conditions for the phase

Bz(0, ky) = ζ(ω, ky)Ey(0, ky),

ζ(ω, ky) =

⎧⎪⎨
⎪⎩

|kω|εd/
√

εdk2
ω − k2

y, for |ky| <
√

εdkω,

−ikωεd/
√

k2
y−εdk2

ω, for |ky| <
√

εd|kω|.
(15)

Note again that the term ζ(ω, ky) for |ky| <√
εdkω originates from outcoming electromagnetic

wave (radiation), while the term ζ(ω, ky) for |ky| >√
εdkω is due to the wave decaying at distance

∼(k2
y − εdk2

ω)−1/2 from the lead boundaries. The lat-
ter term does not carry energy out of the junction.
For completeness, we also present this important re-
lation in the frequency–space representation

Bz(ω, 0, y) =
∫

dy′U(ω, y − y′)Ey(ω, 0, y′),

U(ω, y) = εd

2
[|kω| J0(

√
εdkω y) + ikωN0(

√
εdkω y)].

(16)

where J0(z) and N0(z) are the Bessel functions, and
in the time–space representation

Bz(t, 0, y) = √
εd

∂

∂t

∫
dt′dy′ �[c2

d(t − t′)2 − (y − y′)2]√
c2

d(t − t′)2 − (y − y′)2

× Ey(t′, 0, y′) (17)

where �(x) = 1 if x > 0 and 0 if x < 0 and cd =
c/

√
εd.
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Now we will relate boundary fields with the
phase. From Eqs. (5) and (8) follows the relation

Ey(0, ky) = iλ2
ωkωκxBz(0, ky)

− ikω�0

2π

(
ϕω(0) − λ2

ω

λ2

∫ 0

−∞
exp(κxx)∇xϕω(x)dx

)
.

(18)

This relation and Eq. (15) allow us to express the
boundary fields via the phase distribution

Ey(0, ky) = Bz(0, ky)
ζ(ω, ky)

, Bz(0, ky) = �0

2π

iζkω

1 − iζλ2
ωkωκx

×
(

−ϕω(0) + λ2
ω

λ2

∫ 0

−∞
exp(κxx)∇xϕω(x)dx

)

(19)

Typically, ζλ2
ωkωκx ∼ λω/c � 1. Also �xϕω(x) ∼

ϕω(x)/λJ and the integral term in Eq. (19) is smaller
than ϕω(0) by the parameter λ/λJ . Therefore, we
obtain

Ey(0, ky) ≈ �0

2π
ikωϕω(0), Bz(0, ky) ≈ �0

2π
iζkωϕω(0).

(20)

Within this approximation, the magnetic field at
the junction edge which determines the boundary
condition (12) is

Bz(r = 0) ≈ −�0

2π
ikωϕω(0)Z(ω),

Z(ω) ≈
∫ π/d

−π/d

dky

2π
ζ(ω, ky) ≈ εd|kω|

2

− i
εdkω

π
ln

π/d√
εd|kω| . (21)

Finally, we obtain the boundary conditions for
smooth oscillating phase at both edges, x = 0,−l, in
a finite-length JJ:

∇xϕω(x) ≈ ±2iλkωZ(ω)ϕω(x), for x = 0,−l.
(22)

Radiation outside JJ to the right is given
by the Poynting vector, Prad = (c/4π) ∫ dy〈Ey(0, y, t)
Bz(0, y, t)〉t,

Prad ≈ εdwω3�2
0

64π3c2
|ϕω(0)|2. (23)

We also present the phase equation and bound-
ary conditions in the time representation. Introduc-
ing the dimensionless variables τ = ωpt, and u = x/λJ

and using Eq. (11), we write the equation for the total
smooth phase ϕ(τ, u), which includes both oscillating
and non-oscillating components

[
∂2

∂τ2
− ∇2

u + (
αt − αq∇2

u

) ∂

∂τ

]
ϕ + sin ϕ = 0. (24)

Using Eqs. (12), (21), and (22) and adding the
boundary condition for the static phase, we obtain
the dynamic boundary condition:

∇uϕ(τ, 0) = −b −
∫ τ

−∞
dτ′K(τ − τ′)

∂ϕ(τ′, 0)
∂τ′ ,

K(τ) = dεd

2πεiλJ

∂

∂τ

[F(ξτ)
τ

]
,F(v) =

∫ v

0
d zJ0(z).

(25)

Here, ξ = πc/(ωpd
√

εd), J0(z) is the Bessel func-
tion, b = 4πλλJ H0/�0 with H0||z being the applied
dc magnetic field, b � λJ /λ. For the edge x = −l we
need to change sign of K. Due to the non-analytical
ω-dependence of Z(ω), the kernel K(τ) is irregular
at d → 0 and then τ → 0. Singular frequency de-
pendence of Z(ω) is due to retardation caused by
electromagnetic wave propagation inside dielectric,
Eq. (17). Thus, boundary conditions also exhibit re-
tardation effect.

Fig. 2. The JJs at x < 0, dielectric at 0 < x < L � k−1
ω and super-

conducting screen with the London penetration length λs and the
thickness D � λs. Such a screen effectively reflects the Swihart
wave back into the junction. It introduces additional interaction
of vortices in different junctions in the case of multiple parallel
junctions.
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2. OUTSIDE SUPERCONDUCTING SCREEN

Let us consider now a junction with supercon-
ducting screen at the right side separated from the
layered crystal by the dielectric with the thickness L
small in comparison with the wave length of the elec-
tromagnetic wave in this dielectric, see Fig. 2. Such a
screen prevents the radiation from the right side in-
creasing it from other side. In the case of many par-
allel junctions, the screen enhances their interaction
as was suggested by Ivanchenko [11].

At kωL � 1 we can neglect effect of the dielec-
tric on the boundary conditions as fields in the dielec-
tric are the same as at the edge of the superconduct-
ing screen. Fields inside the superconducting screen
obey Eq. (9). The solution is

Ey(ω, x, y) = 1
(2π)2

∫ +∞

−∞
dkyG(ky)e−κxx+ikyy,

κx =
√

λ−2
s,ω + k2

y .

Ex(ω, x, y) = − 1
(2π)2

∫ +∞

−∞
dkyG(ky)

ky

κx
e−κxx+ikyy,

Bz(ω, x, y) = − 1
(2π)2

∫ +∞

−∞
dkyG(ky)

λ−2
s,ω

ikωκx
e−κxx+ikyy,

(26)

where λs,ω, given by Eq. (4), characterizes the super-
conducting screen and λs is the London penetration
length of the screen. From this solution, we obtain

Bz(ω, r = 0) = −�0

2π
ikωϕω(0)Zs(ω), (27)

Zs(ω) = i
πkωλ2

s,ω
ln

(
1

λs d

)

This leads to the boundary condition

∂ϕω(0)
∂u

= ηϕω(0), η ≈ 2λJ λ

πλ2
s

ln
(

1
λsd

)
(28)

Note that η � 1. This results in the condition
that ϕω(0) is very close to zero for screened edge of
the junction, while at the open edge the condition is
that space derivative is close to zero. There is flow
of energy from closed edge proportional to the small
parameter 4πλ2

sσq/c due to quasiparticle dissipation
inside the screen.

3. SOLUTION FOR THE PHASE
DIFFERENCE, I–V CHARACTERISTICS,
RADIATION, AND DISSIPATION POWER

Now we solve analytically Eq. (24) using the per-
turbation theory with respect to the Josephson cur-
rent [31,32] in the limit |b − ω̃/b � 1. Taking solution
as

ϕ(τ, u) = ω̃τ − bu + θ(τ, u), θ(τ, u) � 1, (29)

and expanding sin[ϕ(τ, u)], we see that θω(u) ≡
θ(ω̃, u) obeys reduced versions of Eq. (11) with sω =
−eibu/i,[∇2

u + ω̃2 + iω̃
(
αt − αs�

2
u

)]
θω(u) = −eibu/i. (30)

and boundary conditions (22)

dϕ

du
= ±iω̃βϕ, for u = 0,−l̃ (31)

with

β = β0

(
|ω̃| − 2iω̃

π
ln

πc/d√
εdωp |ω̃|

)
, β0 = εdd

2εiλJ

Solution for θ(ω̃, u) given by,

θω(u) ≈ − eibu/i
ω̃2 − b2 + iαbω̃

+ a1eipωu + a2e−ipωu,

(32)

describes the moving vortex lattice (the first term)
and reflected Swihart waves propagating to the
right and left. Here αb = αt + αqb2 and pω =√

(ω̃2 + iαtω̃)/(1 − iαqω̃) ≈ ω̃ + iα/2 with α = αt +
αqω̃

2. For a JJ with both open edges finding a1 and
a2 from the boundary conditions (31) we obtain the
phase distribution

θω(u) = − exp(ibu)/i
ω̃2 − b2 + iαbω̃

−{(b − βω̃) [cos[pω( l̃ + u)] − iβ̃ sin[pω( l̃ + u)]]

− (b + βω̃) exp(−ibl̃) [cos(pωu) + iβ̃ sin(pωu)]}/
{(ω̃2 − b2 + iαbω̃)pω[(1 + β̃2) sin(pω l̃)

+ 2iβ̃ cos(pω l̃ )]}
with β̃ ≡ βω̃/pω and l̃ = l/λJ . Alternatively, the
phase was obtained by expansion with respect to
eigenmodes [31, 32]. In particular, the boundary val-
ues which determine outside irradiation are given by

θω(0) = i
ω̃2 − b2 + iαbω̃

×
[

1 − (b − βω̃)[cos(pω l̃) − iβ̃ sin(pω l̃)] − (b + βω̃) exp(−ibl̃)

ipω[(1 + β̃2) sin(pω l̃) + 2iβ̃ cos(pω l̃)]

]
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θω(−l̃) = i exp(−ibl̃)
ω̃2 − b2 + iαbω̃

×
[

1 − (b − βω̃) exp(ibl̃) − (b + β̃ω̃)[cos(pω l̃) − iβsin(pω l̃)]

ipω[(1 + β̃2) sin(pω l̃) + 2iβ̃ cos(pω l̃)]

]

These cumbersome formulae can be significantly
simplified in the regime b � ω̃, weak dissipation
αt, αq � 1, and large impedance mismatch, |β| � 1.

In this case, keeping only Fiske resonance terms, we
obtain

θω(0) ≈ [cos(pω l̃) − exp(−ibl̃)]/(ω̃bD),

θω(−1) ≈ [1 − exp(−ibl̃)cos(pω l̃)]/(ω̃bD), (33)

D ≈ sin(ω̃l̃) + i(2β + αl̃2) cos(ω̃l̃),

In these approximate results, we also neglected
the term Im [β(ω)], which only slightly shifts res-
onance positions. Radiation to the right and left,
Pr,l

rad(ω̃, b), is determined by the values |θω(0)|2 and
|θω(−l)|2. At low dissipation, αl̃ � 1, we derive

P r,l
rad ≈ �2

0ωω2
pω

64π3c2b2

1 − 2 cos(bl̃)cos(ω̃l̃) + cos2(ω̃l̃) ± ρ

|D|2 ,

(34)
ρ = 2(αl̃ + 2β)[1 − cos(bl̃) cos(ωl̃)]b.

The radiation reaches maxima for almost standing
Swihart waves at frequencies ω̃ = ω̃n = πn/l̃ with
n = 1, 2, . . . , when cos(bl̃) cos(ω̃nl̃) �= 1. The reso-
nance width is determined by both, the dissipation,
αl̃, and by the radiation, β. The perturbation the-
ory is valid in resonance for |θω(0)| ∼ (bαl̃ω̃)−1 < 1
and the radiation power in this linear regime is quite
small, Prad/ω� 10−6 and �1 µW/cm at ν = 10 GHz
and 1 THz, respectively. The asymmetry of radiation
described by ρ is small.

Next we derive the dc current at voltage V =
�0ω/(2πc) and estimate Q. The current I via JJ is
given by the tunneling quasiparticle contribution,
It = σtVlω/d, and the Josephson current contribu-
tion, Is,

Is(ω) ≈ JclωiJ (35)

iJ = l̃−1
∫ 0

−l̃
du〈cos(ω̃τ − bu)θ(τ, u)〉τ. (36)

The exact result for the reduced Josephson current,
iJ, is given by

iJ = αbω̃/2

(ω̃2 − b2)2 + α2
bω̃2

+ Im

[
(b2 + β̃2p2

ω)[cos(bl̃) − cos(pω l̃)] + iβ̃[(b2 + p2
ω) sin(pω l̃) − 2pωbsin(bl̃)]

l̃pω(p2
ω − b2)(ω̃2 − b2 + iαbω̃)[(1 + β̃2) sin(pω l̃) + 2iβ̃ cos(pω l̃)]

]

(37)

In the case of weak dissipation, the total
Josephson current can be split into the dissipa-
tion and radiation parts, Is = Is, dis + Is, rad. The
radiation part plays the same role as dissipation
because in both cases energy is transferred from the
moving vortex lattice to other degrees of freedom
(to photons in the case of radiation). In the lowest
order in λ/λJ � 1 at the resonance frequencies we
get

Is,dis ≈ αεiωpl
2εdωd

Is,rad ≈ �0cωαl̃ sin2(bl̃/2)
32π2λλj b2ω̃|D|2 . (38)

Losses due to radiation are equivalent to those
caused by a resistor with Rω = 2π/(εdω) attached
parallel to JJ (Rw ≈ 90 � cm for εd = 1 and ν =
10 GHz). The power fed into JJ is P = IV. Part of
it, (It + Is,dis)V, is dissipated inside JJ, while another
part, Is,radV, is radiated. Neglecting non-resonant
part, It, we obtain for the radiated fraction, Q ≡
Prad/P ,

Q = Re[β]
ω̃

2l̃

|θω(0)|2 + |θω(−l̃)|2
αtw̃ + iJ

. (39)

In the regime of weak dissipation and near reso-
nances we approximately obtain

Q ≈ r
1 + r

, r = Is,rad

Is,dis
= 2εddω

εiωpαl
. (40)

To clarify the physical meaning of the parameter
r, we can represent it as r = Qz(ω � k−1

ω )N where

Qz
(
w � k−1

ω

) = 2εddω

εiλJ ωp
� 1

is the transmission coefficient of the electromagnetic
wave at the junction edge (impedance mismatch) into
free space in the limit wkω � 1 and N = 1/αl̃ is the
number of reflections before the Swihart wave de-
cays inside JJ. At wkω ∼ 1 and our result is larger
than that given by Eq. (1) by the factor N . As dissipa-
tion inside JJ decreases (σt and σq drop), N increases.
As one can see from Eq. (40), the relation between
the dissipative and radiative dampings is mainly de-
termined by competition between the two small pa-
rameters, α and d/l. In the linear regime, bαl̃ω̃ > 1,
we get N < bω̃. Due to limitation b < λJ /λ we obtain
Q� (d/λ)ω̃2 ∼ 10−2(ω/ωp)2.

Figure 3 shows three-dimensional plots illustrat-
ing dependencies of the total reduced current den-
sity J/J0 = αtω̃ + iJ and the radiated fraction Q on
the Josephson frequency ω (voltage) and field b. For
illustration purposes we used toy parameters, l̃ =
4, αt = 0.01, αq = 0, and β0 = 0.001. Figure 4 shows
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Fig. 3. Three-dimensional plots of the current density (left plot) and the radiated fraction (right plot) for l̃ = 4, αt = 0.01, αq = 0, and
β0 = 0.001 obtained within linear approximation.

Fig. 4. The voltage dependencies of J and Q at several fields for the same parameters as in the previous plot. The current shows sharp
increases near the marked Fiske-resonance frequencies. The linear approximation does not describe narrow regions near the resonances. Q
reaches maxima given by Eq. (40) at the resonances. In the plots for b = 3.5π/l ≈ 2.75 and 4π/l ≈ 3.53 one can see sharp drops of Q at the
frequencies, corresponding to the Eck resonance condition ω̃ = b.
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voltage dependencies of J and Q for several fields.
The current shows well-known sharp peaks at the
Fiske-resonance frequencies, and peak amplitudes
oscillate with the magnetic field [31–33]. The conver-
sion coefficient Q shows smooth oscillating behav-
ior reaching maxima given by estimate (40) at the
resonances. We also observe another nontrivial fea-
ture, Q sharply drops at the position corresponding
to the Eck resonance conditions, ω̃ = b, even though
no feature is seen in I–V dependencies for this fre-
quency. For comparison, we also plotted in Fig. 5 the
same dependencies for the case of higher dissipation,
αt = 0.1. This case is quantitatively described by the
linear approximation and allows us to trace switching
between different Fiske peaks with increasing cur-
rent.

For a JJ with closed and open edges we obtain

θω(0) ≈ − sin(pω l̃)/(ω̃bD),

D ≈ cos(ω̃l̃) + (i/2)(β + αl̃) sin(ω̃l̃), (41)

The Poynting vector of radiation from open
edge at x = 0 is given by the expression

Prad ≈ �2
0ωω2

pω

64π3c2b2

sin2(ω̃l̃)
|D|2 , (42)

The I–V characteristics defined by Eq. (35) con-
sists of maxima at the frequencies ωn. The part of
it, where dI/dV < 0, is unstable in the current-biased
regime. Experimentally, only voltages corresponding
to the resonance frequencies ωn were observed [2,3].
Numerical calculations [6,7] show that such a behav-
ior occurs in the nonlinear regime, i.e., at very low
dissipation.

3.1. Conclusions for Single-Junction Case

We have shown that in the case of weakly dis-
sipative junctions Q may become of order unity in
the linear regime. Nevertheless, the radiation power
per unit width, Prad/w, given by Eq. (23), is always
small in this regime because the condition |θω|�1 also
restricts the power fed into JJ. The open question
is whether it is possible to get |θω| � 1 and larger
Prad in strongly nonlinear regime when dissipation
is very low and many Swihart modes are involved.
The I–V characteristics in this limit have the form of
sharp steps (FIske steps) according to experimental
data [2,3] and numerical calculations [6,7]. However,
the amplitude ϕω(0), which determines the radiation

power, in highly nonlinear regime was not calculated
yet.

In conclusion, accounting for the radiation into
the dielectric outside media, we derived the dynamic
boundary conditions for JJ with the width ω much
larger than the wave length of the electromagnetic
wave radiated into the free space. The method of
derivation may be extended to the case wkω � 1
and following qualitative conclusions are valid for
this case as well. We have shown that in the linear
regime of Josephson oscillations the radiated frac-
tion Q of the power fed into the junction is deter-
mined by the number of multiple reflections (i.e.,
by dissipation rate inside JJ) and by the transmis-
sion coefficient, QZ, from JJ into free space. Even if
Q reaches unity, radiation power per unit width of
JJ remains small in the linear regime. To probe ra-
diation power from JJ in the nonlinear regime, nu-
merical study based on Eqs. (24) and (25) is needed.
We think that measurements of radiation in the best
junctions available now, like those studied in [34],
at low temperatures and at intermediate magnetic
fields may show higher radiation than that observed
previously.

4. RADIATION IN LAYERED
SUPERCONDUCTORS

For layered superconductors we need to formu-
late equations for the phase differences ϕn(t, x) inside
each intrinsic junction n between layers n and n + 1
as well as the boundary conditions for these vari-
ables. Here coordinates of layers are y = (n + 1/2)s
and layers are parallel to the plane (x, z). In general
ϕn depend also on the coordinate z, the direction of
the applied magnetic field H0, but we will neglect
this dependence (straight-vortex approach) assum-
ing that width of the crystal along the z-axis is much
larger than the radiation wavelength, kωw � 1. The
derivation of equations for ϕn(t, x) [36–38] is similar
to that for a single JJ. Using the Maxwell equations,
the expression for the intralayer supercurrents via
the phase of the superconducting order parameter in-
side layers and the Josephson relation for interlayer
current one need to exclude all variables describ-
ing intralayer currents and electromagnetic fields in-
duced by these currents by expressing them via ϕn.
Formulation of the boundary conditions is also sim-
ilar to a single-junction case and is based on Eq.
(16). However, solution of the equations for phase
differences is now much more complicated because
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Fig. 5. The voltage dependencies of current J and radiated fraction, Q, at several fields for the higher dissipation αt = 0.1 (other parameters
are the same as in the previous plots). Both J and Q show maxima near the marked resonance frequencies. Arrow marks frequency
corresponding to the Eck resonance condition ω = b. With current sweep the system will switch between different peaks, as it is illustrated
by the dashed lines.

the vortex structure is two-dimensional (along x- and
y-axes) and may vary depending on the parameters
such as the applied dc magnetic field H0, the length
l along the x-axis and also on the transport current
(velocity of moving lattice). To have significant radi-
ation power motion of vortex lattice in different in-
trinsic junction should be synchronized, as in multi-
ple artificial JJ. For that interaction of intrinsic junc-
tions should be strong enough and it should favor
in-phase vortices in all junctions, i.e rectangular vor-
tex lattice. First, we present the equations and the
boundary conditions for ϕn(t, x) and then discuss so-
lutions for these equations and corresponding radi-
ation power in linear regime of Josephson oscilla-
tions when perturbation theory may be used to solve
equations for the phase differences. We will focus on
crystals with large number of layers on the scale of
the London penetration length λab for intralayer cur-
rents. In this case, super-radiation from many layers
becomes possible when there are many junctions on

the scale of radiation wavelength and when vortices
in many junctions are synchronized. We will show
that in this case significant part of the energy fed into
the crystal is converted into the radiation.

4.1. Equations for the Phase Differences

The crystal length l is along the x-axis, while the
transport current is perpendicular to the layers. Thus,
the Josephson vortex lattice moves along the x-axis,
see Fig. 6.

As we assumed that there is no dependence
of the phase difference, current density j, and the
electromagnetic fields on z-coordinate, the compo-
nents j z, Ez, Bx, and By vanish. The phase difference
ϕn(t, x) between the layers n and n + 1 is defined as

ϕn(t, x) = �n − �n+1 − 2π

� 0

∫ (n+1)s

ns
dyAy(x), (43)
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where �n is the phase of the superconducting or-
der parameter inside the layer. Intrinsic junction
n is in the space (n − 1/2)s < y < (n + 1/2)s. If all
N intrinsic JJs are identical then the dynamics of
the system can be described by reduced coupled
equations for the phase differences, ϕn(t, x), and re-
duced magnetic fields hn = By(y = ns)/Bc with Bc ≡
�0/(2πλabλĉ) (see. e.g., [40])

∂2ϕn

∂τ2
+ νc

∂ϕn

∂τ
+ sin ϕn − ∂hn

∂u
= 0, (44)

(
∇2

n − �−2
(

1 + νab
∂

∂τ

))
hn+

(
1+νab

∂

∂τ

)
∂ϕn

∂u
= 0.

(45)

Here we used reduced x coordinate, u = x/λJ nor-
malized to the Josephson length λJ = γ s and reduced
time, τ = ωpt, where ωp = c/(λc

√
εc) is the plasma

frequency, εc is the c-axis high-frequency dielectric
constant inside the superconductor, λab and λc are
the London penetration lengths, � ≡ λab/s, s is the
interlayer distance, and ∇2

n notates the discrete sec-
ond derivative operator, ∇2

nAn = An+1 + An−1 − 2An.
The dissipation parameters, νab = 4πσab/(γ2εcωp)
and νc = 4πσc/(εcωp), are determined to the quasi-
particle conductivities, σab and σc, along and perpen-
dicular to the layers, respectively. The conductivity
σab plays the same role as the conductivity σq for a
single JJ. Applying the operator ∇2

n − �−2(1 + νab
∂
∂τ

)
to the first equation and excluding hn, we can also de-

Fig. 6. Schematic picture of layered structure of superconductor
and Josephson vortex lattice. The unit cell of Bi2Sr2CaCu2O8 com-
pound and the relation of the crystal structure to the layered model
are shown in the left. The directions of the applied dc magnetic
field H0, of the dc transport current j , and of the radiation Poynt-
ing vector Px are also shown. The Josephson vortices forming tri-
angular lattice are shown schematically by elliptic cylinders and vl

is the velocity of moving lattice.

rive equations containing only ϕn(u, τ)[
∇2

n − �−2
(

1 + νab
∂

∂τ

)](
T̂c

∂ϕn

∂τ
+ sin ϕn

)

+
(

1 + νab
∂

∂τ

)
∂2ϕn

∂u2
= 0, (46)

with T̂c ≡ ∂/∂τνc. Equation (46) represent just charge
conservation laws. The first term describes the
change of electron charges inside the layers and
Cooper-pair interlayer tunneling currents, while the
second term describes superconducting intralayer
currents. The terms with the coefficient νab describe
quasiparticle dissipative in-plane currents induced
by moving Josephson vortices. The static interac-
tion of junctions is described by the term ∇2

n sin ϕn,
while their dynamic interaction is described by the
term Tc(∂/∂τ)∇2

nϕ. Both are short-range (nearest-
neighbor) weak interactions and they are not very ef-
fective in keeping long-range ordering of vortex lat-
tice along the y-axis.

In the system of finite number of layers N the
dc current with the density J is injected in layer 1
and extracted from layer N. Then equations for the
first and the last junction are obtained from Eq. (46)
by putting ϕ0 = ϕN+1 = 0 in linear terms and replac-
ing sin ϕ0 = sin ϕN+1 = j . In a finite-layer system the
edge junctions differ strongly from other junctions
because they have only one neighboring junction.

The electric field inside the superconductor be-
tween layers n and n + 1 in terms of the phase differ-
ence is given as

Ey;n,n+1 ≈ �0

2πsc
∂ϕn

∂t
. (47)

The average (over time or space) electric field
determines the Josephson frequency ωJ . The average
magnetic field we denote by B and we introduce di-
mensionless average magnetic field b = 2πsλJ B/�0.

The parameters of BSCCO at low tempera-
tures are ωp/(2π) = 0.15 THz, the Josephson crit-
ical current Jc = 1700 A/cm2, γ = 500, εc = 12,
s = 15.6 Å, σc(0) = 2 × 10−3 (� cm)−1, σab(0) = 4 ×
104 (� cm)−1 [44], and so � ≈ 100, νab ≈ 0.2 and
νc ≈ 5 × 10−4. An important feature of the high-
temperature superconductors is higher relative
in-plane dissipation in comparison with c-axis dissi-
pation, νab � νc. Another layered high-Tc compound
Tl2Ba2CaCu2O8 has lower anisotropy γ ≈ 150 and
as a consequence higher critical current Jc ≈ 3 ×
104 A/cm2 and higher plasma frequency, ωp/(2π) ≈
0.75 THz [45].
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4.2. Boundary Conditions and the Poynting Vector
of Radiation

We assume that there are only outcoming waves
and use Eq. (16) for an open edge. In the junction n,
we approximate Bz(y) ≈ Bz(yn) and Ey(y) ≈ Ey(yn),
where yn = sn. This gives the following boundary
condition at the boundary x = 0,

Bz(ω, n) =
∑

m

U(ω, n − m)Ey(ω, m), (48)

U(ω, n) ≈ (1/2)s[|kω|Jc(kωsn)

+ ikωN0(kωsn)], n �= 0,

while for n = 0 we need to substitute −(2/π) ln
[1/(|kω|s)] for N0(kωsn). Finally, we use the relations

Bz(t, n) = Bc�
2
[
∂ϕn

∂u

]
x=0

, Ey(t, n) = Bc�√
εc

[
∂ϕn

∂τ

]
x=0

,

(49)

to formulate the boundary condition for oscillat-
ing part of ϕn(x, t). This gives the following general
boundary conditions for the phase differences

∂ϕn

∂u
= ± isω

2�
√

εc

∑
m

[|kω|J0(kωs|n − m|)

+ ikωN0(kωs|n − m|)]ϕm (50)

In the time representation we obtain again Eq. (17),
as for a single junction.

For the Poynting vector, we derive

Px(ω) = �2
0ω

3

64π3c2Ns

×
∑
n,m

J0(kωs|n − m|)ϕn(ω, 0)ϕ∗
m(ω, 0). (51)

Let us consider now the layered superconduc-
tor with a superconducting screen at the right side
separated from the layered crystal by the dielectric
with thickness L small in comparison with the wave-
length of the electromagnetic wave in this dielectric,
see Fig. 7.

Then, as in the case of a single JJ, we neglect ef-
fect of the dielectric on the boundary condition. The
solution inside the superconducting screen is given by
Eq. (26). From this solution we obtain

Bz(ω, y) = iλ−2
s,ω

kω

∫
dy′N0

(
y − y′

λs,ω

)
Ey(y′). (52)

Fig. 7. The stack of intrinsic JJs at x < 0, dielectric at 0 < x < L �
k−1
ω and a superconducting screen with the London penetration

length λs and the thickness D � λs. Such a screen introduces ad-
ditional interaction of vortices in different intrinsic junctions.

This relation leads to the boundary condition for
the oscillating part of the phase difference

∂ϕn(ω, 0)
∂u

= λJ S

λ2
s,ω

∑
m

N0

[
s(n − m)

λs,ω

]
ϕm(ω, 0). (53)

Here space derivative of the phase differences
and the phase differences are at the point x → −0.
The space derivative now is not small, the parameter
(sλJ /λ

2
s ) may be of order unity or larger. The term in

the free energy, Fbc, corresponding to the boundary
condition Eq. (53), is

Fbc

w
=

∫
dy

∫
dx

B2
z

4π
= λs,ωs

∑
n

B2
z(sn)
4π

= �2
0s

16π3λ3
s,ω

∑
n,m

H
[

s(n − m)
λs,ω

]
ϕn(ω, 0)ϕ∗

m(ω, o),

H(an) =
∑

k

N0(ak)N0[a(k+ n)]. (54)

This free energy can be compared with the bulk
inductive interaction, corresponding to Eq. (46),
see [39],

Find = �2
0

32π3λabλc

∫
du∇uϕn(u)∇uϕm(u)

× exp
[
−|n − m|s

λab

]
. (55)

Both interactions favor triangular lattice at least in
the static case. The coefficient in Eq. (54) is much
larger than that in the inductive free energy, i.e., su-
perconducting screen enhances strongly the tendency
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to form triangular lattice along the y-axis for not very
large junction length l.

4.3. Solutions for the Phase Difference and the
Radiation Power at High Fields in Large-N Case

We consider here the simplest case of layered
crystals with large number of layers N � l, when we
can neglect edge effects along the y-axis, i.e., the dif-
ference between the edge (the first and the last) and
inner junctions. This corresponds to the thickness
larger than 0.2 µm with the total number of junctions
N > 100.

In the linear regime of Josephson oscillations the
general solution for the phase difference has the form

ϕn(τ, u) = ω̃τ − bu + κn + θn(τ, u), θn(τ, u) � 1.

(56)
For κn = 0 the lattice is rectangular, ϕn = (τ, u) are
n-independent. For κn = πn the lattice is triangu-
lar, vortices in neighboring layers are in anti-phase
positions. For a static lattice such a configuration
minimizes the energy of the magnetic field inside the
crystal with large l, N. However, at small l boundary
conditions are inconsistent with triangular lattice at
some values of bl, and in this case rectangular lattice
becomes more favorable [42]. For moving vortex lat-
tice energy consideration does not work, and here the
parameters kn should be determined by the condition
that total current I via each junction is the same [40],

JcλJ w
∫ 0

−l̃
du〈sin ϕn(τ, u)〉τ = I. (57)

Slowly moving lattice preserves its triangular
structure. This was confirmed experimentally via ob-
servation of magnetic oscillations of the flux-flow re-
sistivity with the period of one flux quantum per two
junctions[43]. Theoretical analysis [40,41] shows that
the triangular lattice becomes unstable at the lat-
tice velocity slightly smaller than the Swihart velocity
cS = cs/(2λab

√
ε). This instability corresponds to ex-

perimentally observed end point of the first flux-flow
branch. It was also shown that interaction with top
and bottom surfaces leads to significant lattice defor-
mations [40].

Situation at high velocity vl � cS is less clear.
Lattice structures and their stability in this regime in
the case of large lateral size � have been addressed
in [40] and have been reconsidered in [41] with the
conclusion that for parameters typical for BSCCO
no stable regular lattice exists at high velocities.

Structures and stability of steady states for small lat-
eral sizes l is an open issue.

In the following sections we will estimate the ra-
diation power for rectangular and triangular lattice
and for lattice with random values of κn. Those are
most probable realizations of vortex configurations
in the large N limit. They give also an estimate for
maximum radiation power which one can anticipate.

4.4. Rectangular Vortex Lattice

For rectangular lattice sketched at Fig. 8, ϕn =
ω̃τ − bu + θ(τ, u), the equation for the oscillating
part, θ(u), is given by

∂2θ

∂τ2
+ νc

∂θ

∂τ
− �2 ∂2θ

∂u2
≈ − sin(ω̃τ − bu). (58)

For a junction opened at both edges the solu-
tion is similar to that of a single JJ, Eq. (32). How-
ever, there is important difference due to the pres-
ence of large coefficient �2 in front of the second
space derivative. This coefficient is due to unifor-
mity of rectangular lattice and corresponding super-
currents along the y-axis, see Fig. 8. This uniformity
leads to large energy of the magnetic field, i.e., induc-
tive coupling, Eq. (55), resulting in small amplitude
of phase variations. To find radiation power and
I–V characteristics we use results of the perturba-
tion theory for a single JJ. To make Eq. (58) simi-
lar to that for a single JJ we introduce ũ = u/�, b̃ =
b�, and l̃ should be replaced by l̃/�. We limit our-
self to the frequencies much smaller than the Eck

Fig. 8. Rectangular lattice of Josephson vortices in layered su-
perconductors. The screening currents flow along the y-axis lead-
ing to the large energy of the magnetic field (inductive coupling).
Correspondingly, the amplitude of phase modulation is weak, but
vortices come to the junction edges coherently inducing super-
radiation.
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resonance ω̃ � b�. In this case, the solution has the
form θ(τ, ũ) = Re[θω exp(−iωτ)] with

θω(u) ≈ eib̃ũ/(ib̃2) + a1 exp(ipωũ) + a2 exp(−ipωũ),

(59)

The coefficients a1 and a2 should be found from the
boundary conditions given by Eq. (50). For rectangu-
lar lattice at the edge x = 0 we obtain

∂θω(0)
∂ũ

= iω̃
2
√

εc
s

×
∑

n

[|kω|J0(kωsn) + ikωN0(kωsn)]θω(0).

(60)

Large number of junctions N > (kωs)−1

We consider first the case of very large number
of layers N > (kωs)−1. Then

∂θω(0)
∂ũ

≈ iω̃√
εc

θω(0). (61)

This corresponds to β ≈ 1/
√

εc. Important point is
that for such β the perturbation theory is correct for
ω̃|b� − ω̃| � 1, i.e., practically at all interesting fields
and frequencies. We limit ourself to the frequencies
smaller than the Eck resonance ω̃ � b. Thus, the am-
plitude of Swihart waves is proportional to small fac-
tor �−1 and oscillating part of the phase differences
at Nskω � 1 is described by Eq. (33) with the extra
factor �−1 for θω(0) and θω(−l). Further, we need to
replace ω̃l̃ by ω̃l̃/� ≈ 0, while in D we need to put
β = 1/

√
εc and α = νc. Assuming that the length of

junctions is small enough, ω̃l̃ � � and using results
Eq. (33) we see that oscillatory dependence of the
radiation power and of the dc current on ω̃l̃ drops
out and we obtain for the dc current at ω̃b� � 1 and
ω̃l̃ � � the expression without resonances

i = 1
Jcwl

= νcω̃ +
√

εc| sin(bl̃/2)|
b2�l̃

1
ω̃

. (62)

For the radiation power of N layers, using Eq. (51),
we obtain

Prad

w
≈ �2

0ω
2
pεc

32π3cb2

N
s�2

sin2(bl̃/2). (63)

Comparing this result with that for a single junction,
Eq. (34), we see that the additional factor N/(kωs�2)
is present. In BSCCO and TBCCO crystals at the fre-
quency ν = 1 THz the parameter kωsl2 ∼ 1. Thus, the
radiation power of N layers for a moving rectangular

lattice is N/(kωs) times larger than from a single in-
trinsic junction and additional large factor 1/(kωs) is
due to super-radiation in the case Nkωs � 1.

Let us discuss now the I–V characteristics given
by Eq. (62). At a given current i > imin we have stable
solution with positive slope, dI/dV > 0, at ω̃ > ω̃min.
Here

ω̃min =
( √

εc

b2�l̃νc

)1/2

| sin(bl̃/2)|,

imin = 2νcωmin. (64)

Hence, moving rectangular lattice cannot exist at cur-
rents i < imin due to super-radiation as power fed into
the crystal should support radiation as well as quasi-
particle dissipation needed to ensure stability of this
dynamic state. This condition is necessary but it may
be not sufficient for the stability of moving rectangu-
lar lattice. The ratio of radiation power to that of dis-
sipation one is r = (ω̃min/ω̃)2. Thus, maximum value
of Q is 0.5 at i = imin, and Q drops as current in-
creases beyond imin.

For BSCCO crystals at l̃ = π and b = 1 we es-
timate ω̃min ≈ 4, while imin ≈ 4 × 10−3. At the fre-
quency ν = 1 THz we obtain Prad/w ∼ N(µW/cm)
for Tl2Ba2CaCu2O8 crystals. Using the energy con-
servation law, IV = Prad, we see that to reach this
power the total dc current I via the junction should
be about 0.004 of the critical current. The radia-
tion power in BSCCO crystals at the same frequency
is about 25 times weaker due to smaller Josephson
plasma frequency.

Consider now practically more interesting case
of moderate number of layers, � < N � (kωs)−1. In
this case, from Eq. (60) we obtain the following
boundary condition

∂θω(0)
∂u

= iω̃βN

�
θω(0), (65)

βN = sN
2
√

εc

[
|kω| − i

2kω

π
ln

1
|kω|sN

]
. (66)

This condition is very similar to the boundary condi-
tion (22) for a single junction.

Solving for a1 and a2, we obtain for the edge
phase

θω(0) ≈ cos(ω̃l̃/�) − exp(−ibl̃)

�bω̃
[
sin(ω̃l̃/�)+i(2βN + νcl̃/2�) cos((ω̃l̃/�)

]
(67)

Due to βN � 1 at small dissipation we obtain
the resonant-type I–V characteristics with Fiske



Bulaevskii and Koshelev

resonances at ω̃l̃/� = πn, as in a single JJ. Moreover,
for parameters of BSCCO the c-axis quasi-particle
dissipation is negligible in comparison with the radi-
ation damping. At resonances we derive

iJ = νcω̃ + 1 − (−1)n cos(bl̃)

2l̃ω̃�b2Re[βN]
, (68)

The linear approximation brakes down at
2�bω̃ReβN ∼ 1, i.e., it is valid for number of layers
N >

√
εc/(b2ω̃λab|kω|). At the frequency 1 THz linear

approximation is valid if N > 100. The total radiation
power per unit width at the resonance frequency
does not depend on number of layers and is given by

Prad

w
= εc�

2
0ω

2
p

32π3λ2
abωb2

[1 − (−1)n cos(bl̃)] (69)

The independence of this result on N appears as
a result of cancellation of the N2 factor in the to-
tal power of N coherently radiating junctions and
the factor β−2

N ∝ N−2 which determines the reso-
nance damping. Away from resonances and for reso-
nances limited by quasiparticle damping Prad ∝ N2.
For BSCCO crystals at ω/2π = 1 THz, we obtain
Prad/w ≈ 24 mW/cm, while for Tl2Ba2CaCu2O8 crys-
tals we estimate Prad/w ≈ 0.5 W/cm. Now ω̃min and
imin become larger as N drops:

ω̃
3/2
min =

( √
εc

b2�l̃νv

)1/2 2| sin(bl̃/2)|√
ωpsN/c

,

imin = 3
2
νcωmin. (70)

As N increases beyond N ∼ �. the total radiation
power does not depend on N in Fiske resonances and
increases ∝ N2 outside resonances, while ω̃min de-
crease as N−1/3. This behavior holds until N reaches
(kωs)−1. After that Prad increases linearly with N,
while ω̃min remains constant.

It is interesting to compare our estimate with re-
cent large-scale simulations of THz radiation out of
BSCCO mesa by Tachiki et al. [27]. They solve the
Maxwell equations coupled with the equations for
the intralayer phases inside the crystal and the dielec-
tric media. They found that close to one of the Fiske
resonances lattice is mostly disordered but with pro-
nounced rectangular correlations promoted by gen-
erated standing electromagnetic wave. They found
quite powerful outside radiation in this state, with
power density up to Px = 3000 W/cm2. Our estimate
following from Eq. (69) for 100 junctions occurs to be
only slightly smaller ∼1500 W/cm2.

4.5. Triangular Lattice

Triangular lattice, again in the limit b � 1, be-
haves quite differently in comparison with rectangu-
lar one. The solution has the form

ϕn(τ, u) = ω̃τ − bu + πn + (−1)nφ(τ, u) + θ(τ, u).
(71)

Here φ describes the amplitude of the phase oscilla-
tions with Josephson frequency ω, while θ describes
oscillations with the frequency 2ω which are induced
by moving vortex lattice due to nonlinearity of cou-
pled sine-Gordon equations (46), see [26]. According
to theoretical estimates [40] when the lattice veloc-
ity approaches the Swihart velocity, the lattice may
generate a very powerful electromagnetic wave in-
side superconductor, with power density up to 20
W/cm2. Unfortunately, this main harmonic of elec-
tromagnetic wave at the frequency ω experiences full
internal reflection at the boundary and does not radi-
ate outside. The triangular lattice produce only weak
outside radiation at frequency 2ω, caused by the ho-
mogeneous in c-direction component of the phase,
θ(τ, u). In the case of semiinfinite superconductor
the radiation power at 2ω has been estimated in by
Artemenko and Remizov [26]. Here we estimate this
power for finite-size samples when pronounced Fiske
resonances are present.

Putting the solution Eq. (71) into Eq. (46), we
obtain coupled equations for φ(τ, u) and θ(τ, u):

∂2φ

∂τ2
+ ∂

∂τ

(
νc − νab

4
∂2

∂u2

)
φ

+1
4

∂2φ

∂u2
= − sin(ω̃τ − bu), (72)

∂2θ

∂τ2
+ νc

∂θ

∂τ
− �2 ∂2θ

∂u2
= −φ cos(ω̃τ − bu), (73)

From the second equation, we see that θ is of or-
der �−1 and, as a consequence, terms linear in θ were
omitted in the first equation in comparison with the
term describing dissipation.

The boundary conditions for the alternating and
homogeneous phase are given by

∂φ(0)
∂u

= 0,
∂θ(0)
∂u

≈ ±iβω̃θ(0). (74)

for u = 0, �̃ with β = 1/
√

εc. In the framework of the
perturbation theory, at ω̃bαtr l̃ � 1, the amplitude φ,
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Fig. 9. Triangular lattice of Josephson vortices in layered super-
conductors. Screening currents compensate each other inside the
lattice vortex cell (2s, 1/b) leading to significant reduction of the
magnetic energy and enhancement of the amplitude of the phase
variations in comparison with rectangular lattice. The in-plane
screening currents lead to intralayer quasiparticles contribution to
the dissipation of the moving lattice. Due to nonlinearity there are
field components at the frequency 2ω with small amplitude. They
cause super-radiation at the frequency 2ω.

in the lowest order in 1/b, is given by the expression

φ = 4[cos(q(u + l)) − exp(−ibl) cos(qu)]
bqsin(ql)

,

q = 2ω̃ + αtr, (75)

where αtr = νc + νabω̃
2/4. Putting it into the equation

for θ and accounting for boundary conditions we ob-
tain

θ ≈ i
2ω̃β�b3

[1 − exp(−2ibl̃)]

− [cos(2ω̃l̃) − exp(−ibl̃)][1 − exp(−ibl̃)]

ω2β�b2[sin(2ω̃l) + iαtr l̃ cos(2ω̃l̃)]
. (76)

Keeping only the resonance term, we obtain the
radiation power at the frequency 2ω in the linear
regime

Prad(2ω) =≈ εc�
2
0ω

4
p

2π3cs2�2ω2b4

N
kωs

× [cos2(2ω̃l̃) − 2 cos(2ω̃l̃) cos(bl̃ + 1][1 − cos(bl̃)]

sin2(2(2ω̃l̃) + (αtr l̃)2 cos2(2ω̃l̃)
.

(77)

Here, as for rectangular lattice, we have large factor
(kωs)−1 due to super-radiation at the frequency 2ω.
This differs from the radiation power for rectangular
lattice at the same frequency by the factor of order
unity at ω̃ ∼ 1 and b ∼ 1 in the linear regime. Thus,

both rectangular and triangular lattice give approx-
imately the same radiation power for ω̃ ∼ 1 and in
both cases the radiation is coherent. However, their
I–V characteristics and the conversion coefficients Q
are very different. The fraction of the power con-
verted into radiation depends on quasiparticle con-
ductivities σab and σc. These conductivities remain
nonzero in cuprate superconductors even if temper-
ature approaches zero because cuprates are gapless
superconductors. As a result, only small part, of or-
der (b2�2αtr l̃)−1, is converted into the radiation in the
linear regime. Thus, for triangular lattice we estimate
very small Q ∝ �−2. This translates into strong heat-
ing and practically triangular lattice cannot provide a
realistic source of radiation.

The I–V characteristics is determined by the be-
havior φ and so it is resonant at low dissipation, as
in a single JJ. In particular, for (i) weak dissipation,
q ≈ 2ω̃ + iαtr, and (ii) small frequencies ω̃ � b/2 we
obtain

iJ ≈ 8
b4

αbω̃ + 2αb[cos(2ω̃l̃) − cos(bl̃)] cos(2ω̃l̃)

l̃ω̃b2[sin2(2ω̃l̃) + (αtrl)2 cos2(2ω̃l̃)]
,

(78)

where αb = νc + νabb2 and αtr = νc + νabω̃
2. The am-

plitude of the Fiske peak at 2ω̃nl̃ = πn is

δniJ ≈ 2[1 − (−1)n cos(bl̃)]

ω̃nb2 l̃3(νc + νabω̃2
n)

. (79)

Note that triangular lattice excites resonances
for the antiphase modes whose frequencies are by
factor 2� = 2λab/s ∼ 300 smaller then the frequen-
cies of the homogeneous modes excited by the rect-
angular lattice. Very pronounced Fiske steps have
been observed recently by Kim et al. [23]

We also estimated that the lattice with random
parameters κn gives incoherent radiation with ap-
proximately the same power and the conversion co-
efficient as triangular lattice.

5. CONCLUSIONS

We have estimated the radiation power from
most probable vortex lattices in the large-N limit.
Our estimate for rectangular lattice in BSCCO
agrees satisfactory with results of numerical study
by Tachiki et al. [27]. We see that only rectangu-
lar lattice gives significant radiation power and quite
high conversion coefficient, i.e., up to half power
fed into the crystal may be converted into the ra-
diation. Thus, not very high currents are needed
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to get significant radiation power. However, the
main question to be answered is what are pa-
rameters of the stability of rectangular lattice in
finite-size samples. Other open questions include the
following:

1. What is the radiation power in highly nonlin-
ear regime for triangular lattice and for rect-
angular lattice with moderate number of lay-
ers N?

2. What is the structure of steady states and
the radiation power of crystals with not very
large N < �, when the boundaries along the
y-axis become important?

3. What are boundary conditions and the radia-
tion power in crystals with wkω � 1?

4. Are there fully gapped layered supercon-
ducting materials or artificial multilayer sys-
tem which can be used as radiation sources?
Presence of finite gap in the whole Fermi sur-
face drastically reduces quasiparticle dissipa-
tion at low temperatures and the problem of
high dissipation for the moving triangular lat-
tice in the high-temperature superconductors
will be avoided.

5. Is it possible to get stronger radiation from
the triangular lattice by modulating the ra-
diated end phase of the crystal? For exam-
ple, one can use some periodic layer of di-
electric or metal between the crystal and
the air which may result in more effec-
tive conversion of high ky electromagnetic
fields inside the crystal into low ky outside
electromagnetic waves. For that the surface
modulation has to have the periodicity 2s,
i.e., every second layer has to be closed.
For efficient conversion, one can anticipate
that the radiation power would be larger by
the factor �2 ≈ 104 in BSCCO and TBCCO
crystals.
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